On the enumeration of plane bipolar posets and transversal structures Éric Fusy, Erkan Narmanli, and Gilles Schaeffer

Maps, introduction

3. Link with plane permutations

1. Specialization of the KMSW bijection

2. Asymptotic counting results

Maps embeddings in the plane

\rightarrow exact enumeration formulas

→ universal asymptotic

exponent: # maps with n edges = $\varkappa \cdot \gamma^n n^{\frac{5}{2}}$

A second second

→ universal asymptotic exponent:

maps with n edges = $\varkappa \cdot \gamma^n n^{\frac{5}{2}}$

Maps embeddings in the plane

Decorated maps orientation, coloration, etc.

\rightarrow exact enumeration formulas

→ universal asymptotic exponent:

maps with = $\varkappa \cdot \gamma^n n^{\frac{5}{2}}$

Maps embeddings in the plane

Schnyder Woods

transversal structures

Plane bipolar posets

Decorated maps orientation, coloration, etc.

A second second

→ universal asymptotic exponent:

maps with n edges = $\varkappa \cdot \gamma^n n^{\frac{5}{2}}$

Maps embeddings in the plane

Schnyder Woods

Decorated maps orientation, coloration, etc.

transversal structures

Plane bipolar posets

Maps, introduction

2. Asymptotic counting results

3. Link with plane permutations

1. Specialization of the KMSW bijection a. Bipolar orientations, KMSW bijection

Plane bipolar orientation

ACYCUC 1 single source S 1 single sink N

Plane bipolar orientation

Plane bipolar orientation

face of size (i+1,j+1)

Plane bipolar orientations

Plane bipolar orientations

Plane bipolar orientations

Plane bipolar orientations

Plane bipolar orientations

Plane bipolar orientations

Plane bipolar orientations

end:

bipolar orientations

bipolar orientations

\rightarrow Bipolar orientations on planar maps and SLE₁₂, R. Kenyon, J. Miller, S. Sheffield and D. Wison (2015)

Maps, introduction b. Plane bipolar posets

2. Asymptotic counting results

3. Link with plane permutations

1. Specialization of the KMSW bijection a. Bipolar orientations, KMSW bijection

Plane bipolar poset

Plane bipolar poset

Poset (plane bipolar poset)

orientation No multiple edge
Plane bipolar poset

Poset (plane bipolar poset)

orientation No multiple edge No transitive edge

Plane bipolar poset

Poset (plane bipolar poset) = Bipolar orientation No multiple edge No transitive edge

Plane bipolar poset

Specialization to Posets

Specialization to Posets

Bipolar orientation

where

Specialization to Posets

Bipolar orientation

where

Maps, introduction b. Plane bipolar posets c. Transversal structures

2. Asymptotic counting results

3. Link with plane permutations

1. Specialization of the KMSW bijection a. Bipolar orientations, KMSW bijection

Maps, introduction b. Plane bipolar posets c. Transversal structures

1. Specialization of the KMSW bijection a. Bipolar orientations, KMSW bijection d. Plane bipolar posets by vertices

2. Asymptotic counting results

3. Link with plane permutations

Bipolar orientation

Bipolar orientation

→ New bijective links on planar maps via orientation, E. Fusy (2010)

Bipolar orientation

→ New bijective links on planar maps via orientation, E. Fusy (2010)

Bipolar orientation

maps via orientation, E. Fusy (2010)

Bipolar orientation

→ New bijective links on planar maps via orientation, E. Fusy (2010)

Bipolar orientation

→ New bijective links on planar maps via orientation, E. Fusy (2010)

Bipolar orientation

→ New bijective links on planar maps via orientation, E. Fusy (2010)

Bipolar orientation

→ New bijective links on planar maps via orientation, E. Fusy (2010)

Bipolar orientation

→ New bijective links on planar maps via orientation, E. Fusy (2010)

Tandem walk

Posets n+2 edges

Transversal structures n blue edges

Model

Posets n+2 edges

Transversal structures n blue edges

Posets n vertices

Maps, introduction b. Plane bipolar posets c. Transversal structures

2. Asymptotic counting results

3. Link with plane permutations

1. Specialization of the KMSW bijection a. Bipolar orientations, KMSW bijection d. Plane bipolar posets by vertices

Asymptotic counting results

 $a_n \sim \varkappa \cdot \gamma^n n^{-1 - rac{\pi}{rccos(heta)}}$

If the drift is zero, *i.e.* :

 $\mathbf{E}[X] = \mathbf{E}[Y] = 0$

And the covariance matrix is identity.

Asymptotic counting results

 $a_n \sim \varkappa \cdot \gamma^n n^{-1 - rac{\pi}{rccos(heta)}}$

If the drift is zero, *i.e.* :

 $\mathbf{E}[X] = \mathbf{E}[Y] = 0$

And the covariance matrix is identity.

Asymptotic counting results

 $a_n \sim \varkappa \cdot \gamma^n n^{-1 - rac{\pi}{rccos(heta)}}$

If the drift is zero, *i.e.* :

 $\mathbf{E}[X] = \mathbf{E}[Y] = 0$

And the covariance matrix is identity.

Asymptotic counting results

Weighted steps

 $a_n \sim \varkappa \cdot \gamma^n n^{-1 - rac{\pi}{rccos(heta)}}$

If the drift is zero, *i.e.* :

 $\mathbf{E}[X] = \mathbf{E}[Y] = 0$

And the covariance matrix is identity.

Asymptotic counting results

Shear transformation

Weighted steps

 $a_n \sim \varkappa \cdot \gamma^n n^{-1 - rac{\pi}{rccos(heta)}}$

If the drift is zero, *i.e.* :

 $\mathbf{E}[X] = \mathbf{E}[Y] = 0$

And the covariance matrix is identity.

Asymptotic counting results

Shear transformation

Weighted steps

Model

Asymptotic counting results

 $e_n\sim\varkappa\gamma^n n^{-lpha}$

 γ and lpha are explict analytic constants $\gamma pprox 4.80 \dots \ lpha pprox -5.14 \dots$

Asymptotics

Model

Posets n+2 edges

Transversal structures n vertices

Asymptotic counting results

 $e_n \sim \varkappa \gamma^n n^{-lpha}$

 γ and lpha are explict analytic constants $\gamma pprox 4.80\ldots \ lpha pprox -5.14\ldots$

27 $t_n\sim arkappa$

Counting rectangular drawings, Y. Inoue, T. Takahashi & R. Fujimaki (2009)

Asymptotics

 $\arccos(7/8)$

Model

Transversal structures n vertices

Posets n vertices

Asymptotic counting results

 $e_n \sim \varkappa \gamma^n n^{-lpha}$

 γ and lpha are explict analytic constants $\gamma pprox 4.80\ldots \ lpha pprox -5.14\ldots$

 $t_n\simarkappa(rac{27}{2})^n n^{-1-rac{\pi}{lpha\mathrm{rccos}(7/8)}}$

Counting rectangular drawings, Y. Inoue, T. Takahashi & R. Fujimaki (2009)

Asymptotics

Maps, introduction b. Plane bipolar posets c. Transversal structures

2. Asymptotic counting results

a. Plane permutations

1. Specialization of the KMSW bijection a. Bipolar orientations, KMSW bijection d. Plane bipolar posets by vertices

3. Link with plane permutations

Dominance relation

Dominance relation

Dominance diagram = Dominance relation with no transitive edges

Dominance diagram = Dominance relation with no transitive edges

Plane permutation = No edge crossing in the dominance diagram

Plane permutation = No edge crossing in the dominance diagram

Maps, introduction b. Plane bipolar posets c. Transversal structures

2. Asymptotic counting results

a. Plane permutations

1. Specialization of the KMSW bijection a. Bipolar orientations, KMSW bijection d. Plane bipolar posets by vertices

3. Link with plane permutations b. Bijection with posets by vertices

Plane permutation \longrightarrow Poset

 \rightarrow Baxter permutations and plane bipolar orientations, N. Bonichon, M. Bousquet-Mélou, & E. Fusy (2010)

$$\pi: 1 \rightarrow 9$$

$$\boldsymbol{\pi}: \ 1 \rightarrow 9$$
$$2 \rightarrow 5$$

$$\pi: 1 \rightarrow 9$$
$$2 \rightarrow 5$$
$$3 \rightarrow 6$$

Poset \longrightarrow Plane permutation

 $\pi: 1 \rightarrow 9 \qquad 6 \rightarrow 3$ $2 \rightarrow 5 \qquad 7 \rightarrow 4$ $3 \rightarrow 6 \qquad 8 \rightarrow 8$ $4 \rightarrow 10 \quad 9 \rightarrow 1$ $5 \rightarrow 7 \quad 10 \rightarrow 2$

Poset \longrightarrow Plane permutation

display of planar upward drawings,

Posets by vertices 640 2+1

Posets by vertices 6+1 2+1

permutations

woods

Plane

Schnyder

permutations

